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1.0 INTRODUCTION

The proposed wake shield experiment will study the current-voltage (1V) characteristic of a charged
probe mounted on an uncharged shielding disk, which will be oriented through a sequence of tilt angles
with respect to the shuttle direction of motion. In this report, we summarize calculations done with the
POIL.AR 2 code to model the IV characteristic of the wake-shield probe for typical orbit environments.

The normal version (POLAR 1) of the POLAR code [Lilley, et al., 1989] has been used extensively to
study charging effects in space | Cooke, et al.. 1989] and in vacuum chambers [ Chan, et al.. 1993]. The
POLAR 2 code |Jongeward, et al.. 1988], on the other hand, is an experimental version of POLAR
which has gone through a very limited validation phase. POLAR 2 was written by S-Cubed to analyze
the plasma sheath and current collection in the SPEAR I rocket experiment [Katz, et al., 1989]. It
contains the same physical models as POLAR | (although several features are not fully implemented)
and allows for multiple grids. The multi-grid capability is required for problems with large
computational spaces and localized high resolution regions, such as SPEAR I. In the wake-shield
experiment, the probe dimensions are small compared to those of the shielding disk, and in order to do
the simulations efficiently and with adequate resolution, we have used the multi-grid feature of POLAR
2. Thus. we have emploved two grids in our wake-shield model: a course grid to represent the exterior
plasma region and the shielding disk, and a nested fine grid to resolve the region surrounding the
charged probe.

In this study, we have taken as the nominal configuration the case where the front disk is oriented
perpendicular to the flow direction. We then consider tilt angles to plus and minus 40 degrees away
from the nominal orientation, as depicted in Figure 1. The main objective of this investigation was to
calculate the IV curve for the probe as a function of the tilt angle. A list of all the physics input
parameters that were used is given in Table 1. Note that the probe size is very much smaller than the
disk dimensions (ratio of 30:1), and that to properly resolve the experiment in the probe region, we were
driven to employ a multi-grid representation of the problem.

TABLE 1. Wake Shield Model Input Parameters

Parameter Value

Diameter of shielding disk oM

Width of probe 8.33 cm

Length of probe 250 cm

Plasma ambient temperature 0.2 eV

Plasma ambient density 910" 1x10''#M?
Plasma ambient Debye length  0.35, 1.05S ¢m

lon mass 16.0 AMU

Plasma acoustic velocity (vt) 1.1 km/sec

Shuttle velocity (vs) 7.68 km/sec

Ton Mach number (vsivt) 7.0

Tilt angles -40, -20. 0. 20, 40 degrees

Probe voltages -1,-3,-5, -7, -9kV
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In section 2, we describe the POLAR 2 multi-grid model of the wake shield experiment, and section 3
summurizes the physics results obtained from the simulations. The last section contains the conclusions
to be reached from this study.

POLAR 2 is an unfinished, experimental version of POLAR and, as such, required a considerable
programming effort to enable it to produc reliable physics output. Some of the special programming
considerations that were needed to implement POLAR 2 are contained in the Appendix.

2.0 CALCULATION SCHEME FOR THE POLAR 2 MODEL

Figure 2 shows a schemutic of the sequence of run submissions used for setting up each POLAR 2 case.
In the Figure. the box on the lower right represents the run that actually generates the IV characteristic
for a given tlt angle. The other boxes represent tasks that were needed to prepare the tilt angle
geometry. Each box indicates briefly the task to be performed. and the arrows indicate the dependency
paths. A fuller explanation is given below.

The POLAR 2 code does not bave a vehicle module for building objects. Instead, it has the PATCHY
program which enables one to take POLAR 1 objects and combine them into a multi-grid representation
for POLAR 2. To orient the probe, a grid scaling factor and the position of the nested inner grids with
respect to the outer grid is set in PATCHV. To specify the wake shield problem, we have built a
POLAR 1 model of the front disk and taken this as the outer grid. A POLAR 1 model of the probe
was also constructed, and this was specified to be an inner grid. The two grids were then combined by
means of PATCHYV to form the resultant POLAR 2 computational space.

Pigure 3 shows the POLAR 1 model of the front disk. It is an octagon made of conducting material
(the tvpe of matenial does not matter since the surface potential was held constant) of width 9 grid units
and side 5. The disk was chosen to be of minimum thickness, which is one grid unit. Physical
dimensions of meters were specified by setting each mesh unit cube to have sides of length 0.33 meters,
which corresponds to a 3 meter diameter disk.

Figure 4 shows the POLAR 1 representation of the probe. It is made up of 3 conducting cubes stacked
along the z direction. 'The back plate was added to facilitate connection to the disk. This model has
3*4 -1 = 13 outward faces. each of which can be monitored separately for current collection.

Figure S shows the muln-grid object obtained by combining the above disk and probe models. The
probe inner grid was taken to be smaller than the outer grid by a 4:1 ratio. This means that physically
the probe cubes are of side 0.333/4 = 0.0833 Meters. The probe was positioned off center in the negative
x direction. The distance from the probe center to the nearest disk edge is ~5.5 inner mesh units. or 0.42
Meters.

[he POLAR 2 ende does not caleulate the geometrical ion (GI) density. This neutral density is needed
to represent ons i the region outside the sheath where particle tracking is not done. ‘Thus, in order
1o proceed, there were two options considered:




POLAR 1

DISK

build front disk

PROBE

build probe

MAKE GI

—

calculate Gl density

L combine disk and probe

r
- 1‘ insert Gl into POLAR 2
'i

POLAR 2

PATCHV

PATCHG

RUN IV

generate IV curve

Figure 2. Schematic of POLAR 2 Setup Configuration.
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1) upgrade the POLAR 2 code to enable it to calculate GI density.

2) use POLAR 1 to calculate the GI density and transport this data to POLAR 2.

The second option was chosen as it seemed to involve less coding, and it also enabled us to gain access
to the POLAR continuation files, with an option to plot grid data on the IRIS 3D color workstation.
The programs that were developed to do this data transfer are described in Appendix 1.

In POLAR, objects are held fixed and the gridding is adjusted to follow the flow direction. For off-axis
flow, this entails the use of staggered grids, i.e. the grid nodes are successively offset as one goes
downstream. This is shown in Figure 6, which gives the GI density at tilt angles 0, +20, and +40
degrees, as obtained from POLAR 1. The plots for the negative tilt angles would be the same. but
inverted with respect to the x axis. This GI data was loaded into the POLAR 2 files, using the
PATCHG module. POLAR 2 was then ready to start doing some physics, as is described in the next
section.

3.0 POLAR 2 RESULTS FOR THE WAKE SHIELD MODEL

The POLAR 2 calculation of IV characteristics was generated in the following way. First, we did the
setup procedure, as described in section 2, to configure the system for a specified tilt angle. A starting
probe voltage was set and an initial calculation of potential was done using the GI approximation to
density. Then, successive Vlasov (solve for density given the potentials) and Poisson (solve for potentials
given the densities) cycles were carried out until a steady state was achieved. The probe potential was
then increased to the next level and the run was continued until a new steady state was reached. This
process was repeated until the entire 1V curve was obtained. The configuration was then reset for the
next tilt angle and the procedure repeated. The tilt angles were set to values of -40, -20, 0, +20, and +40
degrees, and the probe voltage was swept through -1, -3, -5, -7, and -9 KV. Two families of IV curves
were generated, one for Debye length D = 0.35 cm and one at D = 1.05 cm.

Figure 7 shows the POLAR 2 solutions for grid potential at successive tilt angles. with probe voltage of
-1 KV and -9 KV, for the case D = 0.35 cm. In the Figures, the plus signs represent the location of
the equi-potential surface representing the sheath edge. The POLAR 2 Vlasov algorithm tracks inwards
rrom this equi-potential in order to compute the sheath density and probe current. Note that the grid
space is truncated at the downstream end, but this should not affect the currents, since the sheath edge
contour is always far upstream, in the near wake of the disk.

The POLAR 2 results for ion current collection at D = 0.35 cm are shown in Figure 8. Here. the ion
current (ma) is given as a function of probe voltage (KV), with the tilt angle as parameter. A positive
tilt angle represents a rotation of the near edge of the disk towards the ram direction, and a negative
angle rotates away from the ram as indicated in Figure 2. It can be seen in Figure 8 that, excluding the
-40 degree case, the current tends to increase monotonically as the tilt angle increases. This is to be
expected, since the rotation towards positive tilt angles increases the exposure of the near edge of the disk
to the ram flux. The one exception to this trend is the case of -40 degrees, where there is a significant
current enhancement, especially at the higher probe voltages. This effect is more apparent in Figure 9.
which is a re-plot of the data in Figure 8, but now with tilt angle as independent variable and each curve
representing a different probe voltage. In Figure 9, the current enhancement at a large negative tilt angle

10
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can be seen clearly for all voltages greater than 1 KV. We can understand this current enhancement as
being due to ‘cross-over’ trajectories. That is, when the negative tilt angle gets large enough and the
electric field of the probe gets strong enough, the particles crossing the far edge of the disk can enter
the sheath and be captured by the probe. These trajectories carry a large current since they are directly
in line with the ram flux. To illustrate this effect, we show in Figure 10 some sample trajectories at
probe voltage -9 KV. The Figure depicts trajectories at zero, +40, and -40 degrees tilt angles. The
trajectories are colcred according to the value of the local potential at each time step. The potentials
range from zero (red) to the probe potential (blue). One can see that, at zero tilt, the current is collected
mainly from the near disk edge. At +40 degrees this is also true, and current collection goes up, due
to the increased exposure to the ram flux. At -40 degrees the current collected from the near cdge
decreases, due to the decreased exposure to the ram, but there is now a second source of current at the
far edge, from the cross-over trajectories.

We now consider the case where the Debye length is increased by a factor of 3 (equivalent to the
ambient density being scaled by 19) to D = 1.05 cm. Figure 11 shows the POLAR 2 solutions for
potentials at tilt angles -40, 0, and +40. These plots can be compared to Figures 7(a), (c).and (e) above.
The main difference between the solutions at D = 0.35 and D = 1.05 cm is that sheath size is larger for
the latter case. The increase of sheath size with increasing Debye length is a4 general phenomena which
occurs because the electric field can penetrate more easily into a less dense plasma.

Figures 12 and 13 show current versus probe voltage and tilt angle, in the same format as for Figures
8 and 9. It can be seen that the magnitude of the current is now much smaller. and this can be
attributed mainly to reduced ram flux (longer Debye length corresponds to smaller ambient density and
hence to smaller ram flux). The decrease in current is less than the density scaling factor (1/9) because
the relatively larger sheath collects more current than the smaller sheath.

The POLAR 2 code model also gives information on the distribution of current over the outward facing
probe surfaces. These surface elements have been numbered 1 to 13, starting at the bottom of the probe
and working up. as shown in Figure 14. The percentage of the total current, at each probe voltage. 1s
plotted versus cell number in Figure 15 for the D = 0.35 case and in Figure 16 for D = 1.05. In the
Figures. the different symbols represent the different probe voltages, with the same symbols for voltage
as was used in Figure 9. By symmetry, we expect that currents at the +y and -v sides of the probe (cells
1 and 4. 5 and 8. 9 and 12) should be almost equal. and this gives a check on the accuracy of the
solutions. A comparison of the currents on the +x side (cells 2. 6, and 10) versus the -x currents (cells
3. 7and 11) shows that current tends to be preferentiallv collected on the +x side. which is the side
facing away from the near edge. Thus, the tracks tend to curl around the probe and hit the back
surfaces. rather than impinging directly on the front side. Another trend that 1s apparent 1s that. for D
= 0.35. more current tends to fall on the upper surfaces than near the base of the probe. notably at large
tlt angles. This tendency is not apparent for the D = 1.05 case, where the current distribution tends
to be flatter and there is reduced intensity on the top of the probe.
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Figure 14. Surtace cell numbers on the probe.
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4.0 CONCLUSIONS

We have run POLAR 2 to investigate the IV characteristic of a charged probe in the shielding wake of
an uncharged disk in a plasma environment set to represent typical shuttle orbit condinions. The probe
was positioned approximately 0.4 meters from the near edge of a 3 meter diameter front disk. A tilt
angle of the front disk, away from the nominal orientation perpendicular to the plasma flow direction.,
was varied from -40 degrees to +40 degrees in steps of 20 degrees. The probe voltages went from
negative 1 KV to negative 9 KV in steps of -2 KV. Two plasma Debye lengths were considered. D =
0.35cm and D = 1.05 cm. The POLAR 2 predictions for this wake shield model are:

1) The shielded probe should collect up to 2 ma of current at D = 0.35 (density 9x10''M~>.
temperature 0.2¢V), depending on the tilt angle, at the highest voltage of -9 KV. At
lower voltages. the current drops. approximately linearly. to befow 0.5 ma at -1 KV,

2) At D = 1.05 the muximum current collection s reduced to less than 0.5 ma. The
dependence on tilt angle is qualitatively the same.

3) ‘The current collection should increase with rotations towards the ram (positive tlt
angles).
4) For rotations towards negative tilt angles. the current first decreases and then picks up

again as the tracks which cross over from the far side of the disk start to be collected.
At D = 0.35 the turn-around point. for mimmum probe current, occurs between -20 and
-40 degrees. At D = 1.05 the effect 1s more gradual and some cross-over tracks occur
even at zero tilt angle.

5) Except for the cases with large negative tilt angle. more current is collected on the side
of the probe away from the near edge of the disk than on the side facing the near edge.

6) At D = 0.35. the current distribution over the probe favors more current at the top than
near the base. At D = 1,05 the current distribution s flatter and tends to be reduced
at the top of the probe

The maximum currents given here give upper hnnts, sinee the design imat for the wake shield probe i

-S KV and only the middle band and the top of the probe will be conducting. Based on the IV curves
shown in Figure 8. we would expect about 1 ma of current to impinge on the probe at -5 KV.
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APPENDIX. POLAR 2 PROGRAMMING NOTES

In order to move the geometrical ions (GI) from POLAR 1 to POLAR 2, a whole new module
associated with PATCHG (see Figure 2) was written. This module is comprised of four separate

programs:

getpl

patg

getp2 -

readb -

this program reads POLAR | files fort.11.19 and writes a MSIO file called fort.26. The
MSIO file has a general format so that potentials, etc. can be written, as well as the GI.

this program reads file fort.26 and puts the GI into the POLAR 2 files fort.11,19. It is
assumed that the POLAR 1 und POLAR 2 grids are compatible, i.e the disk object is
the sume for both. and the ion mach number is consistant, so that the staggered grid
nodes will line up.

this program reads POLAR 2 files fort.11,19 and writes a MSI1O file called fort.27. this
program is needed because POLAR 2 does not plot any grid variables except potentials.
The fort.27 file (and also fort.26) can be read by the IRMA plotting program on the
IRIS 3030 work station to produce 3 dimensional color plots of the potentials. ion
densities. and the GIL

this is a check up program used to read back either the fort.26 or fort.27 MSIO file and
write out a grid slice in SUATEK format. In this form, the data can plotted with
SUATEK (for 1D profiles) or MACHCON (for 2D contours).

[hese routines provide un adequate set of tools for handling POLAR 2 data files and to interface to our
existing plotting programs IRMA, SUATEK, and MACHCON. Each progam has its own input stream
and output switches.

The notes below hst miscillancous changes made to POLAR 2 in the course of this study. The major
programming chiange was to routine dblchk.f. This routine was not implemented for multi-grids and had
to be developed from the POLAR 1 prototype.

dens module

pot module

/ dblchk.f implemented multi-grid version

7 optin.fsthcal.f implemented nosthcal kevword for selectively disabeling grid
sheath particles

¢ optdef.f changed default ipent = S from 3.
‘ potfix.f commented out unwanted initialization
gsern2.f fixed stability parameter dgreal sign bug
9
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poilib

shontl

patchv

/ efield.f

/ getgrd.f

/ many

/ patchv.f
mksgrd.f

force stppsh to do boundary checking in the inner grids so vertio
will not crash

skip the search for inner grids when on a boundary, otherwise
ipufad crashes

added new keywords for track display
WGTCUT 1 0.1 10. cut tracks on weights from 0.1 to 10.
TR3ID = 0 tracks are colored by weights

= | tracks are colored by potentials

FILTER = n gives track reduction modulo n

NOSTHCAL = m skips particle tracking from grid m used for
testing

added error level input to bypass tolerable errors

Note: when patg is executed, this is counted as the first pass of nterak, and us such treats the inputs
slightly differently. Thus, it is important to keep the patg input files consistant with the actual run
parameters used later, e.g. it was found that if the TEMP parameter is different, it will crash the run.
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